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Abstract Introduction

Motivation: A method for recognizing the three-dimensionalg i e novadesign and understanding of the biological func-

fold from the protein amino acid sequence based on @y of 4 protein require the knowledge of the relationship be-
combination of hidden Markov models (HMMs) and secondyeen its amino acid sequence and its three-dimensional (3D)

ary structure prediction was recently developed for proteingyycrure Ab initio prediction of protein 3D structure from the

in the Mainly-Alpha structural class. Here, this methodologyyming acid sequence alone remains a challenging problem. A
is extended to Mainly-Beta and Alpha-Beta class proteingsefyl approximate solution to this problem consists of
Compared to other fold recognition methods based Opogeling the unknown structure of a protein sequence with
HMMs, this approach is novel in that only secondaryhe structure of an evolutionarily related protein (Browne
structure information is used. Each HMM is trained fromg| 1969: Greer, 1991). This approach depends on the quality
known secondary structure sequences of proteins havingofithe sequence alignment to the related protein. Below a se-
similar fold. Secondary structure prediction is performed forquence identity of 5%, sequence alignments often become
the amino acid sequence of a query protein. The predicteghreliable, although the proteins may indeed be related and
fold of a query protein is the fold described by the modehay share a common fold and function (Schneider and
fitting the predicted sequence the best Sander, 1991; Doolittle, 1992; Jones and Thornton, 1993).
Results:After model cross-validation, the success rate on 44 |t has been observed that during evolution, the 3D structure
test proteins covering the three structural classes was founfl a protein is more conserved than its sequence (Chothia and
to be 59%. On seven fold predictions performed prior to theesk, 1986). In order to detect the similarity of fold between
publication of experimental structure, the success rate wasequences of low or undetectable sequence identity, optimal
71%. In conclusion, this approach manages to capturgequence threading methods have been developed [see Bry-
important information about the fold of a protein embeddegdnt (1996) for references]. These methods thread a sequence
in the length and arrangement of the predicted heliceshrough known tertiary structures using profile or empirical
strands and coils along the polypeptide chain. When a motntact potentials to judge the quality of fit. Some of these
extensive library of HMMs representing the universe ofnethods primarily use secondary structure information to re-
known structural families is available (work in progress), theate protein sequence and its structure. Shedtlain(1985)
program will allow rapid screening of genomic databasegjenerated a set of possible folds for a query protein by align-
and sequence annotation when fold similarity is not detecing its secondary structure sequence to that experimentally
able from the amino acid sequence determined for proteins of known 3D structure. Unfortunate-
Availability: FORESST web server at http://absal-ly, they did not test this procedure using the predicted sec-
pha.dcrt.nih.gov:8008/ for the library of HMMs of structural ondary structure sequence of the query protein. Rgtse!l
families used in this paper. FORESST web server #1996) mapped predicted secondary structure segments, he-
http://www.tigr.org/ for a more extensive library of HMMs lices or3 strands, to known secondary structure and used

(work in progress) various filters to screen out irrelevant topologies. Hubbard
Contact: valedf@tigr.org; munson@helix.nih.gov; garnier@ and Park (1995) used amino acid sequence-based hidden
helix.nih.gov Markov models (HMMs) and predictions of secondary
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Fig. 1. Schematic representation of the training and testing procedure.

structures, in the case where a higbtrand content is pre- proach, implemented in the program named FORESST (for
dicted, with a strand-pairing potential used to predict th&Old REcognition from Secondary STructures), offers the
B-sheet topology. Rost (1995) and Fischer and Eisenbeaglvantage of allowing rapid screening of genomic databases
(1996) combined various characteristics of the protein sand presents a useful alternative to other threading methods.
guence, e.g. solvent accessibility or amino acid substitution

matrices, with the predicted secondary structure in attemgWaterials and methods

ing to recognize a fold. Rice and Eisenberg (1997) extend . . .

this approach by developing a multi-dimensional substit eﬁ?e overal procedure!nvolved n Qevgloplng HMMS O.f pro-
tion matrix which includes amino acid class, solvent acces<gin Structural topologies and validating them in their fold
bility and secondary structure predictions from the pHpScognition capabiliies is presented 'r] FigareA b”.ef
server. We recently reported an approach to fold recogniti q,]escrlptlo_n of'the methodology follows; further details can
based solely on secondary structure predictions for protei s found in Di Francesaat al (1997a).

of Mainly-Alpha structural class (Di Francestal, 1997a) . .

using HMMs (Rabiner, 1989) of protein folds. Here, weHIdden Markov models of protein folds

present an extension of this work to the other structurdlhe HMM architecture proposed by Kroghal (1994) is
classes, Mainly-Beta and Alpha-Beta, and thereby show tlaglopted in this work. Hidden Markov models of protein
generality of this approach for recognizing a wider variety ofolds, such as globins or TIM barrels, describe in a probabil-
existing folds. The accuracy of the method, 59-64% of coistic way the structural similarity and diversity of proteins
rectly recognized folds for 44 tested proteins, was prospehaving similar folds, such as conserved regions and inserted
tively confirmed, achieving five correct fold predictions outor deleted loops or domains. This is achieved by means of a
of seven (71%) performed prior to knowledge of the experfirst-order Markov chain of the hidden states of the models:
mental structures (Di Francesebal, 1997a,b). This ap- match, insert and delete, corresponding to each residue in the

132



Fold recognition from secondary structure predictions

protein chain. To implement such models, the software packsed for model training. The model assigning the lowest rank
age Sequence Alignment and Modeling (SAM) (Hughey antb the query sequence becomes the predicted fold, even when
Krogh, 1995), Versions 1.1 and 1.3.1, was modified as fothe rank is not number one. For example, if the globin-like
lows. Instead of having each match and insert state producetast protein leca is assigned a score by the HMM of the glo-
observable nucleotide or amino acid, our models producebin-like structural family which ranks sixth, while the scores
secondary structure state: helix (H), strand (E) or coil (C). Thassigned by the HMMs of the wrong structural families are
reduction in alphabet size for model building (three characteranked seventh or worse, the globin fold of 1eca would be
instead of 20 for the different amino acid types) greatly redeclared to be correctly recognized. Whenever a test protein
duces the number of model parameters to estimate (the transiassigned scores that rank 20th or worse by all the models,
tion probabilities between the hidden states and the observes fold prediction is carried out for that sequence.

tion symbol probability distributions associated to either the

match or the insert states). A model is trained on a set of ugross-validated training of models

aligned observed secondary structure sequences of proteins of o ) )

a structural family and produces a residue-by-residue align® test whether correct fold recognition is attained in the
ment of the secondary structure states. Transition probabiligfeésence of low or undetectable sequence similarity between
prior distributions (Hogg and Craig, 1978) are set to the dé’oteins ywth_ similar folds, the m0(_jels were trained with
fault values in the SAM software package. Observation Ser(,:_ross-valldatlon.'For each test protein sequence (see below),
bol probability prior distributions for most of the HMMs are @ model was trained on the other proteins having the same
set to the frequencies of the three secondary structure state{oprlogy that were <25% sequence identical to the test pro-
the sequences in the training set. Proteins with similar foldgin- This cross-validation procedure sometimes reduces the
were selected from the hierarchical database of protein striddmber of proteins used in the training set considerably. For
tures CATH, Versions Jan. 1995, 1.0 and 1.1 (Oretgo, the EF-Hand proteins, it was necessary to raise the cut-off to
1993, 1994), at the topology level. Proteins in the same topg?% in order to have enough proteins to train the model.
logy family are grouped based on both the overall shape and

connectivity of the secondary structures. The proteins in eadte control database and the test set

model training set were selected to maximize the diversity CFhe control database consists of a non-redundant set of 137

sequences while having a sufficient number of StrUCtureSt}gooteins representing some of the known folds. [PDB names

) ; I
train the models of folds. The lower the percentage amino a gernstein et al.,, 1977) of the control database polypeptide

identity in the sequences of the model training set, the mo fains, suffixed with the chain identifiers: lace, lacx

heterogeneity can be found in their secondary structure SE3k3A. 1azu. 1bbpA. 1bds. 1bmvl. 1bmv?. 1cch. 1cdd
guences, and consequently the more generalized is the resEgatA ’1coIA, 100)? icrn l,csel 1eéa 1etu’1f3 ’1fc2C’
ing HMM. The list of proteins in each model training set i ' ’ ' ' ' ' , 4120, '

S. R
. 1fdIH, 1fdx, 1fkf, 1fxiA, 1gd10, 1gly, 1gmfA, 1gplA,
available from the authors upon request 1nddC, 1hip, 1hrhA, 1158, 1lap, 1lib, 1mcpl, 1msbA,

1nsbA, 1ovoA, lpaz, 1pi2, 1pyp, 1r092, 1rbp, 1rhd, 1s01,
Scoring 1sdhA, 1shi, 1tgsl, 1tnfA, 1ubqg, 1wsyA, 1wsyB, 256bA,

2aat, 2alp, 2cab, 2ccyA, 2cpkE, 2cyp, 2fnr, 2fxb, 2gbp, 2gcr,
For each HMM, the normalized negative log-odds scor2gn5, 2hipA, 2hmzA, 2ilb, 2ifb, 2Ih4, 2lhb, 2ItnA, 2ltnB,
(NLO) is calculated for the predicted secondary structure s@mev4, 2orllL, 2pabA, 2pcy, 2phh, 2pk4, 2rspA, 2sarA,
guences of the proteins in a control database and of the qu@scpA, 2sns, 2stv, 2tgpl, 2tmvP, 2tscA, 2utgA, 2wrpR, 3ait,
protein. The score is based on a ratio of the probability th8b5c, 3blm, 3cla, 3cln, 3fgf, 3gapA, 3hmgA, 3hmgB, 3icb,
the particular sequence arises from the model to the probal8bgm, 3rnt, 3timA, 4bp2, 4cms, 4cpv, 4fxn, 4grl, 4pfk,
ity that it arises from a null model based on the average setrhvl, 4rhv3, 4rhv4, 4sgbl, 4ts1A, 4xiaA, 5cytR, Ser2E,
ondary structural composition of the training sequences BhvpA, 5ldh, 5lyz, 5p21, 6acn, 6¢cpa, 6¢pp, 6¢ts, 6dfr, 6tmnE,
each model match states. The more negative the NLO scoreatA, 7icd, 7rsa, 8abp, 8adh, 9apiA, 9apiB, 9pap, S9wgaA,
the better the model fits the sequence. The negative log-odtisk1, 1exf, 1sro, 3dhg. The last 4 proteins in the control data-
scores are normalized by the length of each sequence. ase list were target proteins for fold recognition for CASP2.
each model, the assigned normalized score of the queryTike structure of 3dhq is not yet available in PDB.] The ma-
ranked against the scores of the control database proteingaitty of them (81%) are a subset of a non-redundant database
that the best low ranks (i.e. rank 1, 2, etc.) were associatefl125 proteins collected by Rost and Sander (1993). Addi-
with the most negative scores. Ranks were utilized, rath&onal protein sequences have been added to it such that the
than NLO scores, because scores from different models grairwise sequence identity is <25%.
not directly comparable, but depend strongly on the model Forty-four proteins from this data set were used for fold rec-
length, the scored sequence length and the prior distributioagnition belonging to 14 different CATH topologies. Sixteen
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proteins belonged to the Mainly-Alpha class, 15 to the Mainlyshown). All the proteins whose fold was considered to be
Beta class and 13 to the Alpha-Beta class. For each test protemrrectly recognized obtained scores having ranks lower
cross-validated training was performed, thereby obtaining 4#an 10, and 24 of them, including 2ccyA and 5cytR, ob-
models. Each of the 44 proteins was then scored by each of thimed rank = 5.
44 cross-validated HMMs and ranked appropriately. The fold recognition success rates for each class, Mainly-
Jack-knife cross-validated secondary structure predictiomdpha, Mainly-Beta and Alpha-Beta, were 63% (75% if one
for the proteins in the control database, including the test pralso includes the cases), 40% and 77%, respectively. Mainly-
teins, were obtained using the algorithm QL (Munsoal,  Beta protein folds are not as easily placed into the correct fold
1994) and homologous sequences with an average predicti@milies as the folds in the two other classes. The average Q
accuracy Q= 68% (Q is the percentage of correctly pre- accuracy measure for secondary structure prediction of pro-

dicted residues in the three conformations). teins in the Mainly-Alpha and Alpha-Beta classes is 76.6 and
70.7%, respectively, while the average f@r Mainly-Beta
Results proteins is only 66.1%.4.5 standard deviations lower than
- for Mainly-Alpha (Tablel). There are five proteins whose
Fold recognition incorrect predicted topology belongs to the wrong structural

Fold recognition of a test protein was considered successfiss: the Mainly-Alpha proteins 5cytR and 2tmvP, and the
when its predicted secondary structure sequence attaineteins in the Alpha-Beta class (4xiaA, 8adh, 2fxb). Per-
lower rank with the cross-validated HMM of its true fold haps the most surprising cases are the helical proteins 5¢cytR
than with other HMMs. For each model, the ranking of th@nd 2tmvP, which were both predicted to have a topology in
test protein is in comparison to the scores achieved by titige Mainly-Beta class. Contrary to what one would expect,
predicted sequences of proteins in the control database hétvis is not due to a high predicted conterfi-sfrand residues

ing different topologies. The summary of the fold recognifor those two sequences. In fact, for example, the fraction of
tion results is presented in TalleThe fold topology was predicted helix and strand residues of 5¢ytR is 31 and 11%,
correctly identified for 26 of 44 proteins (59%). Another tworespectively. The wrong class prediction of 5¢ytR is mainly
(2ccyA and 5cytR) of the 44 obtained the same rank by thdue to long predicted coil and short predidBestrand re-
HMM of their true topology and by the HMM of another fold gions that match coil arfétstrand regions in the consensus
(x in Tablel). Including these two, the overall success ratstructure of the predicted immunoglobulin-like topology. In-
becomes 64%. The sequence 2ccyA obtained rank 1 by thert regions are found in the consensus structure of immuno-
cross-validated models of its own fold, but also by the fivglobulin-like proteins where helices are predicted in the
cross-validated models of the globins in the test set (data ristytR sequence.

Table 1.Results of fold recognition of the test proteins

Class and protein topology Protein name Qs (%)P Topology Correct topology Wrong topology predictich
recognitiorf model rank
Mainly-Alpha
Globin-like leca 73.5 + 6
2lhb 71.8 - 3 Granulocyte colony-stimulating factor
1sdh 71.2 + 2
2lh4 69.9 - 3 Granulocyte colony-stimulating factor
1lcolA 71.6 + 3
Cytochrome C550 lcch 84.3 + 1
5cytR 68.0 + 5 Immunoglobulin-like
Four-helix bundle [Hemerythrin (Met), 2hmzA 81.6 + 2
suburiit A] 256bA 87.7 +
2ccyA 85.8 + 1 Globin-like OB folds
2tmvP 66.9 - >20
EF-Hand 4cpv 75.9 + 6
3icb 93.3 + 1
3cin 86.7 + 1
2scpA 56.9 - >20 None
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Table 1.continued

Class and protein topology Protein name Qs (%)P Topology Correct topology Wrong topology predictich
recognitior¥ model rank

Granulocyte colony-stimulating factor ~ 1gmfA 80.7 + 1
(Form Il RCG-CSFII) subunit A

Mainly-Beta 1bbpA 70.5 + 1
Lipocalin’(Streptavidin, subunit A) 1rbp 62.1 _ =20 Immunoglobulin-like
1lib 52.7 - >20 None
2ifb 55 - >20 Immunoglobulin-like
Elongation factor TU, domain 3 2alp 63.6 — 4 Immunoglobulin-like
Immunoglobulin-like, 1 domaln 2pcy 76.8 - >20 OB folds
1lpaz 78.3 - 15 Lipocalin (Streptavidin, subunit A)
lazu 67.7 - >20 OB folds
2pabA 54.4 - >20 None
lacx 69.2 + 5
3ait 68.9 + 5
Immunoglobulin-like, 2 domain 3cd4 65.9 + 4
1fdIH 70.6 + 1
1mcpL 63.6 + 3
OB folds 2sns 73.0 - 4 Immunoglobulin-like
Alpha-Beta 3timA 79.5 + 5
Flavoprotéin™390, subunit A AxiaA 73.8 _ 8 Globin-like
1wsyA 83.2 + 2
Nitrogenase molybdenume-iron protein, 1letu 64.4 + 1
suburiit A, domaint 3. 1' domdin afn 717 . 8
5p21 69.2 + 2
Nitrogenase molybdenum-iron protein, 8abp 64.3 + 3
subuniit A, domairt 3; 2 domdin 2gbp 70.2 + 3
5ldh 63.1 + 10
8adh 64.4 - 18 Elongation factor TU, domain 3
4pfk 74.0 + 2
1gd10 65.9 +
Crambin 2fxb 75.3 - 6 OB folds

Average @ 71.3

aTopology names correspond to version 1.1 of CATH (Orexgd, 1993, 1994).

bCorrectly predicted residues in three states, helix, strand and coil, after cross-validation with QL method and evolfdiomatigrinvhen available. £3s
calculated with respect to the DSSP assignments of observed secondary structures (Kabsch and Sander, 1983).

C+ indicates correct fold recognition, — indicates wrong fold recognitiordicates ambiguous cases in which the test protein was assigned identical, low ranks
by the model of the correct topology and by a model of the wrong topology. Of a total of 44 test proteins, the fold topaloggatis identified for 26 (59%).

If one also considers the two ambiguous cases as correct, the percentage of correctly identified folds is 64%.

dThese are ranks of the NLO score assigned by the cross-validated model of the correct topology of the test protein. Ady #aeharkiof a test protein
is calculated after removal of the scores assigned to the true positives for that specific topology model in the corsteolFtatakample, rank 5 means that
four proteins of the control database were ranked higher and they all were false positives.

€This column contains the wrongly predicted topology name for the test protein in those cases in which the fold is notezmgedtiyd (—) or when the fold
prediction is ambiguoug). ‘None’ indicates that the test protein was not predicted to have any fold since it did not achieve a rank >20 with argdefsh
fThe CATH topology group was divided into two parts, one containing one-domain protein sequences and the other containiainsyedich may or may
not belong to the same topology group.
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In general, cross-validated training of the HMM increasediction (CASP2), held at Asilomar, CA, in December 1996.
the ranking of the scores of the test proteins by one or tweor those proteins, the predicted secondary structures were
positions. However, there are cases, such as the lipocalohtained using several programs: QL (Munsbal, 1994),
immunoglobulin-like (1 domain), and flavoprotein 390 GOR-IV (Garnieret al, 1996), SIMPA (Levin and Garnier,
HMMs, for which cross-validated training considerably in-1988) (Version 96), PREDATOR (Frishman and Argos,
creases the ranks of the scores of certain proteins. For B96) and PHD (Rost and Sander, 1993) with evolutionary
stance, the lipocalin proteins 1rbp, llib and 2ifb had a rankformation when available. The use of several prediction
of 1, 6 and 1, respectively (data not shown), while, witlalgorithms increases the chance of having a predicted se-
cross-validated training, the three proteins have rank >2fuence of secondary structure elements with a smaller
(Tablel). The immunoglobulin-like proteins 2pcy and 1paznumber of mistakes. Moreover, since these proteins did not
had ranks 2 and 1, respectively, when the members of theisve detectable sequence similarity to any protein of known
homology family were not removed from the training set ofold, this search for the correct topology used models that
immunoglobilin-like HMM (compare with Tablg. Fortwo  were not cross-validated, in order to increase the set of poss-
other test proteins, 4cpv and 2sns, their ranks went up fragle structures represented by each model.
1to 6 and 4, respectively. Both leptin and hIL6 were predicted to have the helical

The FORESST technique is here used to identify proteingtokine topology (Di Francesetb al, 1997a). The recently
in the control database that are structurally similar, but haygiblished NMR structure of leptin (Klinet al, 1997) re-
low sequence identity with the test protein. We wished tQeals that its topology is indeed similar to that of four-helix-
assess whether sequence homology detection tools usegifdle short-chain cytokines. For hiL6, an NMR structure
search the control database would also associate the saiRg et al, 1996) and an X-ray structure at 1.9 A resolution
proteins from the structural point of view. Using each of thgSomerset al, 1997) have now been published. Both experi-
44 test proteins, both BLAST (Altschet al, 1990) and mental structures indicate the four-helix bundle of the long-
SSEARCH [Smith and Waterman algorithm from thechain cytokine topology, as was anticipated by our studies.
FASTA package (Pearson, 1996)] searches of the controlthe CASP2 target proteins were polyribonucleotide nu-
database were performed, seeking Signiﬁc-ant-h0m0|0gi%otidyltransferage (T00041 1sr0)’ 3_dehydr0quinase
between the query sequence and the proteins in the cont(rpb014, 3dhg), ferrochelatase (T0020, lakl), elongation
database. If a significant similarity is found, one can immedigctor TU, domain 3 fold for exfoliative toxin A (T0031,
ately associate a protein fold to the test sequence. Note thféxf) andB-cryptogein (T0032, 1beo). Three fold predic-
according to the CATH database, only the 44 test protein;%ns were correct: two Mainly-Beta fold types—an OB fold
the control database belong to the 14 structural topologigsy polyribonucleotide nucleotidyltransferase and an elonga-
represented by the HMMs. The remaining proteins in thgsn factor TU, domain 3 fold for exfoliative toxin A; and an
control database belong to topologies that are different frompha-Beta fold—a TIM Barrel for 3-dehydroquinase. A
th_ose reprgse_r_wted by the HMMs used here. For 33 test pkguyrth prediction for ferrochelatase would have been correct
teins, no significant similarity (cut-off value:< 0.01) with it \we had an HMM for the topology of the two-domain ni-
any other protein in the control database could be found WiEFbgenase molybdenum-iron proteins (NMIP), subunit A,
either method. The pairwise sequence alignment scores Wefmain 3. At that time, we only had a model for one-domain
signif_icant f_or on_ly 25% of the test proteins. For four of thes‘foroteins of that topology. The fifth prediction rcrypto-
proteins, 1I|b,_ 2fib, 2Zpcy and 1paz, the fold was also not COlein was wrongly attributed to the Mainly-Alpha fold phos-
rectly recognized with the HMMs. However, sequence hojhjinase A2, whereas the experimental X-ray structure re-
mology Qete'ctlon tools could notidentify topologically simi-\ a51ed it to be a unique previously unobserved fold.
lar proteins in the control database as well as the HMMs. For the three targets whose fold was correctly predicted, a

comparison was made by the assessors of CASP2 between
Results of blind experiments of fold recognition the HMM _alignments and the structure-based aI_ignm(_ants of

the experimental structures of the target proteins with the
Fold recognition predictions prior to the knowledge of the®?DB structure. This comparison showed that the percentage
structural data for a test protein are of particular interest sincé correctly aligned residues (ASns) ranged between 16 and
they correspond to real experimental conditions. Here wg9%, and the mean alignment shift error (Shft) was between
briefly discuss the results of fold recognition predictions foil.4 and 6.2 residues. Further details of these predictions are
seven additional proteins whose structure was unknown aported elsewhere (Di Francestal, 1997b) and a direct
the time of the prediction. Two target sequences were thosemparison of the performance of this method with that of
of interleukin-6 (hIL6) and leptin, the mouse obese genether fold recognition approaches can be found in the pro-
product; five others were prediction targets for the seconckedings of CASP2 (Levitt, 1997; Marchler-Baggral,
Critical Assessment of techniques for protein Structure Pré997).
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Discussion of structure determination NMR protocols. It was out of the
scope of the present work to investigate the effect of the vari-
us secondary structure prediction algorithms on the per-

the consensus structure and the structural variations, such ganance of this fold recog_n_|t|on approach. It shquld be ob-
extra secondary structure elements and differences in chai .rved that the fold recognition success rate obtained here by

length, of proteins that have the same overall topology. T is approach is also likely to be affected as a more extensive

first-order Markov chains of the hidden states imply that in-orary of HMMS of structu_ral families b_e_comes avallab_le,
ce the likelihood of having false positives and negatives

sertions, deletions or matches depend only on the precedi! ) g
ons, ! P y P I be higher. A more extensive library of HMMs, represen-

hidden state. This is certainly not adequate to describe r e of 2 t of the k tein structural famil
protein structures fully, but these models serve only as a filgttlve of a larger set of the known protein structural families,
IS currently being built. It will be used to calculate the effect

approximation of protein folds which may be improved by, ;
for example, encoding a minimum length for regions wittP! @ larger number of HMMs on the method's performance

match states and secondary structure elements of some spBgf Will soon be available (work in progress) to the scientific
fied type. The fold recognition accuracy of the models an§oMMunity on the Internet at http://www.tigr.org/.
the alignment quality may be enhanced by taking into ac- Th_e c_h0|ce of the proteins for modgl training proyed to be
count the secondary structure prediction probabilities arftCial in those cases in which proteins have multiple struc-
other biochemical aspects of the query sequence, such asj& domains. An illustrative example is shown in Figtjre
hydrophobicity profile. In Di Francescet al (1997c), wh_ere it can be observed that_ some proteins having the sub-
another use of the HMMs of protein folds was shown whicknit A topology of NMIP received poor scores by the two-
consists of refining the secondary structure prediction of @omain model of that topology, even using observed se-
query sequence with the HMM of its predicted structural todU€nces. Indeed thg best scores corre_spondln_g to the_ lowest
pology. Since the HMMs describe protein folds, they effecthree ranks are ass.lgned to two-domain proteins, while the
tively incorporate global structural information that can beVorst two scores (Figuia, filled bars, rank 29 and 59) are
used in the secondary structure prediction scheme. The i8dact of the one-domain proteins 5p21 and 4fxn. The re-
of the HMMs of the predicted folds to modify QL predicted™aining one—dpmaln protein having this topo'logy in the test
sequences provided an improvement in prediction accurat?t' letu, obtained a score that was ranked in the lowest 10.
Qs of 3%. n the other hand, when training the model for one-domain
The motivation for training HMMs of protein folds at the Proteins in this topology (data not shown), 5p21, letu and
topology level of the CATH structural classification, rather4fxn were assigned ranks 1, 1 and 6, respectively, with pre-
than at the homology superfamily level at which the proteindicted sequences. Multi-domain proteins had rank 14 or
are evolutionarily related, followed from the need for a suffihigher with the one-domain model of NMIP. There are also
cient number of proteins for the HMM training sets and thévo-domain proteins receiving poor scores by the two-do-
need to perform model validation. Cross-validated trainingn@in model. The domains of those proteins typically consist
required the elimination of proteins with significant similar-Of non-adjacent segments of the protein chain, such as when
ity to the test protein from the model training set. Often, afe N and the C termini together form the structural domain
entire homology family for the test protein was removed9f the topology of interest, e.g. proteins 8adh or 1gd10. Ithas
with the consequence that the reduced training set did n@gen observed (Hughey and Krogh, 1996; Bagetl,
contain the protein structures most similar to the query prd-997) that there is a linear dependence of the HMM scores
tein. This cross-validation procedure is, therefore, a more sen the protein sequence length, whose effect is more evident
vere test of the method than in actual applications where téhen scoring short sequences with long models (such is the
HMM is trained with a set of sequences representing all tiegse of one-domain proteins scored by two-domain models),
known structures of proteins belonging to a certain topologihere model length is defined as the number of match posi-
level of CATH. tions in the model. In order to skip match positions, short
In prospective blind predictions discussed here, those fsequences use several delete states that do not emit secondary
leptin, interleukin-6 and the five CASP2 proteins, severastructure states and thereby give rise to poor scores, and
predicted secondary structure sequences were obtained whierefore false negatives.
various algorithms for each query sequence, thereby increasThe results of Tablé are obtained with cross-validated
ing the likelihood of having a better quality prediction. It wagpredicted secondary structures. It is noticeable that Mainly-
shown previously (Di Francesa al, 1997a), and addi- Alpha and Alpha-Beta proteins have a higher fold recogni-
tional evidence is available (data not shown), that the retion success rate, 63% (or 75%, including theases) and
ognition capabilities of the models would increase considei7%, than Mainly-Beta proteins at 40%. One might expect
ably if one could use experimentally derived secondanjlpha-Beta proteins to carry more information compared to
structure sequences, such as those obtained at the early staggisly-Alpha and Mainly-Beta proteins, because the sec-

Hidden Markov models provide a stochastic description
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sf ' ' ' ' ' ' ' ' is probably due to the non-locality of residue contacts and
wl @ hydrogen bonds formed [hsheets.

In general, it is difficult to compare success rates for fold
recognition between various methodologies: for example,
some methods use gapped while others use ungapped thread-
: ing, there are often differences in the test sets used and in the
05 0 05 1 15 2 25 3 /3\io o reported accuracy measures. Moreover, the threading analy-

sis presents some inherent difficulties, such as, first, the
T existence of many acceptable structural models for a query
©® sequence and, second, many possible sequence-to-structure
alignments (Lemeet al, 1995; Levitt, 1997). Prediction ex-
periments such as CASP2 are well suited to comparison of
the performances of different methods, since the various ap-

proaches are tested on the same set of proteins and the same
TR accuracy measures are applied for evaluation by independent

NLO score assessors. In that experimental context, this approach was

found to have sustained an overall good performance in both

Fig. 2.Histograms of NLO scores assigned to the 137 proteinsinthe]cOId recognition and in threading accuracy (Levitt, 1997,

control database by the un-cross-validated HMM trained on proteindVlarchler-Baueet al, 1997). This result is a substantial in-
with the two-domain nitrogenase molybdenum-iron proteins dication of the potential of this approach relative to other ap-

(NMIP). Filled bars show the scores of proteins with the NMIP proaches. However, it should be noticed that in CASP2 this
topology (true positives), including one-domain and multi-domain approach has been used together with additional information
proteins. The scores of the proteins in the control database not havingbout the target sequences deriving from other sources, such
any structural domain in the NMIP topology (true negatives) are g5 from the literature or from biological insights of the pre-
indicated by hashed bars) (The score distributions for observed diction team members (Di Francesetoal, 1997b). There-

secondary structuresb)( The score distributions for predicted fore, the fold recognition success rate obtained in CASP2
secondary structures. The distribution of scores obtained with ’

predicted secondary structure sequences is narrower than that WitﬂOeS EOt _entlrelr)]/ reﬂeththe Inherent_capabllltles of thllls apl'
observed sequences and the true positives (in filled bars) are not &roach. Since t _e seto target proteins was too_ small (only
easily distinguished from other proteins as when observed sequenc&€Ven) to constitute a statistically representative sample,
are used. The distribution of scores assigned to the control databaggore blind predIQtIQh experiments of the CASP type will
of observed secondary structure sequences provides an indication ailow for more definitive comparisons of various approaches
how well the model of two-domain NMIP topology distinguishes to fold recognition.

true positives from true ne_gatives. The distribution of scores for the_ To conclude, helices and strands have been commonly rec-
predicted sequences, which corresponds to more realistic experiggnized as important protein structural features. Their ar-
mental conditions, shows the degrading effect of errors made duringangement in space (Richardson, 1981) and their connectiv-
secondary structure prediction. Even with _observed structur_eIty (Robson and Garnier, 1986) allow us to describe and clas-
sequences, though, the NMIP model does not fit some NMIP protein ify their 3D fold (Orenget al, 1993; Murziret al, 1995)

sequences well, as indicated by less negative, and in one ca% d dicti h |
positive, scores. (A positive score indicates that the model fits les S some seconaary structure prediction schemes currently

well than the null model.) This deficiency is due mainly to the fact @chieve an average;Qf 65-75%, .it has been shown here,
that one-domain proteins having the NMIP topology were con- for a variety of folds from three different structural classes,

sidered as true positives for the two-domain NMIP model. that indeed enough information is embedded into the length
and nature of the predicted secondary structures along the
amino acid sequence to characterize a fold topology with an
accuracy of 60-70%.
ondary structure sequence of proteins in the latter two group$3ecause of its limited requirement for CPU time, FO-
mostly consists of only two letters ({H,C} or {E,C}, respect- RESST is suitable for screening large genomic databases. It
ively) instead of a sequence of three letters. This expectatiomay be used as a complement to sequence-based tools when
is realized at least with respect to the Mainly-Beta clasanalyzing genomic sequences and attempting to assign a bio-
However, the fold recognition prediction accuracy for eaclogical role to hypothetical proteins. In fact, for 59% of the
class appears to be correlated to the secondary structure gmteins in the test set, this approach was capable of detecting
diction accuracy. It is well known that secondary structuréold similarity among protein sequences in the control data-
prediction algorithms do not predjgstrand residues as well base, while only 25% of those proteins could be found to be
as the residues having the helical or coil conformation, whicstructurally similar using sensitive algorithms such as

counts

counts
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BLASTP and SSEARCH. This approach should also benefitubbard,T.J. and Park,J. (1995) Fold recognition and ab initio
from future improvements in secondary structure predictions structure predictions using hidden Markov modelsfisttand pair

and possibly of higher order Markov chains. potential.Proteins: Struct. Funct. GeneR3, 398-402.
Hughey,R. and Krogh,A. (1995) SAM: Sequence alignment and

modeling software system. Technical Report, UCSC-CRL-95-7.
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